DreamDance: Animating Character Art via Inpainting Stable Gaussian Worlds

Jiaxu Zhang'?3  Xianfang Zeng®'  Xin Chen*
Wei Zuo? Gang Yu**  Guosheng Lin? Zhigang Tu'*
'Wuhan University *Nanyang Technological University 3StepFun ‘ByteDance

Project page:

Abstract

This paper presents DreamDance, a novel character art an-
imation framework capable of producing stable, consistent
character and scene motion conditioned on precise camera
trajectories. To achieve this, we re-formulate the animation
task as two inpainting-based steps: Camera-aware Scene
Inpainting and Pose-aware Video Inpainting. The first step
leverages a pre-trained image inpainting model to gener-
ate multi-view scene images from the reference art and op-
timizes a stable large-scale Gaussian field, which enables
coarse background video rendering with camera trajecto-
ries. However, the rendered video is rough and only con-
veys scene motion. To resolve this, the second step trains
a pose-aware video inpainting model that injects the dy-
namic character into the scene video while enhancing back-
ground quality. Specifically, this model is a DiT-based video
generation model with a gating strategy that adaptively in-
tegrates the character’s appearance and pose information
into the base background video. Through extensive experi-
ments, we demonstrate the effectiveness and generalizabil-
ity of DreamDance, producing high-quality and consistent
character animations with remarkable camera dynamics.

1. Introduction

Animating character art is a fundamental challenge in the
2D animation industry, with a wide range of applications in
film, game, and digital design. However, traditional 2D ani-
mation is a labor-intensive and time-consuming process that
requires expertise in professional software such as MMD
[10] and Live2D [23]. Recently, human video generation
methods, particularly MikuDance [51], have revolutionized
this challenging task, making it accessible to non-experts.
Derived from previous methods [2, 13, 59], MikuDance per-
forms two strategies to animate character art using driving
videos, as illustrated in Figure 1.

The first strategy is motion modeling, which uses pose
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Figure 1. We propose DreamDance, a novel paradigm that re-
formulates the character art animation task into two inpainting-
based steps: Camera-aware Scene Inpainting for stable scene re-
construction and Pose-aware Video Inpainting for dynamic char-
acter animation.

image sequences to drive characters and 2D scene flow to
guide backgrounds. Similar to MikuDance, existing meth-
ods incorporate other motion guidance, such as optical flow
[24, 42] and camera parameters [31, 44], to represent global
camera movements. However, this motion guidance is en-
tirely 3D-agnostic and struggles to provide consistent scene
context, leading to scene distortion during large-scale cam-
era movements. This inconsistency arises from the implicit
inpainting process, where the scene dynamics exceed the
area covered by the reference, requiring the model to hal-
lucinate missing regions. Therefore, it is crucial to explore
3D-aware scene modeling for consistent camera control.
The second strategy is image animation, which utilizes
the UNet-based Stable Diffusion model [29, 30] to ani-
mate the reference character art using mixed motion guid-
ance. Additionally, some recent methods have developed
incremental pose encoders [55, 59] and reference adapters
[5, 40], using SVD [3] as a base model to achieve hu-
man image animation. However, due to the limitations of
base model capacity and the ambiguity of mixed guidance,
the animation results from these methods exhibit significant
temporal jitters in both characters and backgrounds. There-
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fore, it is crucial to introduce a more powerful video founda-
tion model and redefine the animation process with explicit
contextual scene guidance.

Unlike MikuDance and other relevant methods, we pro-
pose DreamDance, a new paradigm for animating in-the-
wild character art. As illustrated in Figure 1, DreamDance
reformulates the motion modeling and image animation
processes into two inpainting-based steps: Camera-aware
Scene Inpainting and Pose-aware Video Inpainting. These
two components work synergistically to generate consis-
tent, high-quality animation sequences from the reference
character art and driving videos.

Camera-aware Scene Inpainting is presented for stable
scene reconstruction. Inspired by existing 3D Gaussian
methods [6, 39, 48], we leverage a pre-trained image in-
painting model [53] to generate multi-view images and con-
struct a large-scale 3D Gaussian field from the reference
character art. This process utilizes both a pre-defined spi-
ral camera trajectory and an extracted custom camera tra-
jectory. A coarse background video is then rendered along
the custom trajectory by splatting the stable Gaussian field.
This background video contains consistent scene motion in-
formation and serves as a rough yet foundational video for
the later character animation stage.

Pose-aware Video Inpainting is proposed for injecting
dynamic character animation into the coarse scene video.
Based on a video generation model, i.e., CogVideoX [47],
we train a gated video inpainting model to refine the coarse
backgrounds and inject the reference character according
to the pose guidance. The gating strategy is designed to
adaptively incorporate both the character’s appearance and
poses based on the denoising time step, ensuring character
and background consistency throughout the animation. Ad-
ditionally, we exploit a 3D Gaussian-free training approach
to train the dynamic video inpainting model directly using
background-degraded video datasets.

By leveraging this new paradigm, DreamDance animates
diverse character art with stable scenes and precise camera
movements, generating spatio-temporally consistent anima-
tions. We evaluate DreamDance using a wide range of ref-
erence character art and driving videos. Both qualitative
and quantitative results demonstrate that DreamDance can
generate high-quality animations, particularly with flexible
and coherent scene dynamics.

Contributions of DreamDance are listed in three folds:

¢ Camera-aware Scene Inpainting and Pose-aware Video
Inpainting are proposed to re-formulate the charac-
ter art animation task, enabling explicit and consistent
scene context modeling.

* A gating strategy is introduced into a fundamental
video generation model to achieve adaptive video in-
painting, enabling high-dynamic animation of charac-
ter art within a stable Gaussian scene.

» Extensive experiments demonstrate the effectiveness
and generalizability of DreamDance, achieving supe-
rior animation quality over state-of-the-art methods.

2. Related Work

2D character animation provides a vibrant platform for
storytelling but has long been a challenge in the animation
industry. Some previous methods construct animated 3D
characters from reference images and re-project them into
2D videos [27, 33, 50, 58]. These methods require precise
geometry, rigging, and motion editing, making them hard
to automate, and often resulting in a loss of the original 2D
style. Recent approaches like Textoon [8] and AniClipart
[45] aim to generate animatable 2D characters using im-
age and video generation models. However, they still re-
quire significant manual work, and the character’s motion
freedom is limited. In contrast, MikuDance [51] directly
generates 2D animation through an image animation model,
offering a promising solution, but it faces issues with scene
distortion and artifacts due to its 3D-agnostic approach. De-
rived from MikuDance, we propose DreamDance, which
introduces two inpainting steps for 3D context-aware and
consistent character art animation in stable Gaussian scenes.

Human image animation has gained popularity in recent
years [2, 20], with many methods building on pre-trained
image and video generation models [3, 29]. For exam-
ple, Animate Anyone [13] uses a reference-denoising UNet
structure and a temporal module from AnimateDiff [7]
to improve video consistency. DisCo [40] separates hu-
man subjects from backgrounds, allowing for more flexi-
ble combinations. MimicMotion [55] introduces a regional
loss based on pose confidence to enhance human fidelity.
Animate-X [35] extends the pipeline to anthropomorphic
characters. However, these methods mainly focus on char-
acter actions and overlook scene dynamics.

Moving forward, Human4DiT [31] and HumanVid [44]
address camera movements by incorporating a camera en-
coder. However, camera guidance alone cannot handle
large-scale scene dynamics, as it is difficult for the model to
consistently fill in missing areas. MIMO [22] and Animate
Anyone 2 [14] capture environmental representations from
the driving video and restore the backgrounds in the ani-
mation, but they focus on different goals than 2D character
animation, where the scene comes from the reference char-
acter art. In this work, we reconstruct 3D Gaussian scenes
by inpainting reference character art to support precise cam-
era dynamics, and use an MM-DiT-based video foundation
model to generate high-quality character animations.

Video inpainting typically focuses on two main tasks: ob-
ject removal and text-guided inpainting. Traditional meth-
ods, like E2FGVI [18] and FGT [52], use optical flow-
guided feature propagation to reconstruct missing areas
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Figure 2. Illustration of our DreamDance. The reference character art is decomposed into foreground and background layers. The
background image is used to reconstruct a stable 3D Gaussian scene through a wrap-and-inpaint scheme, enabling coarse background video
rendering based on custom camera trajectories. The gated MM-DiT model then inpaints the background video based on the foreground
character and the driving poses, generating dynamic character animations.

with coherent content. More recently, models like AVID
[56] and CoCoCo [60] have integrated pre-trained genera-
tive inpainting models [29] with motion modules for text-
guided video inpainting. Unlike these approaches, our
video inpainting step focuses on filling in the coarse back-
ground with animated characters guided by pose videos. To
achieve this, we propose a gating strategy within the DiT
[26, 47] model to adaptively integrate the character’s ap-
pearance and poses, enabling dynamic character animation.

3D Gaussian Splatting [15] utilizes the concept of Gaus-
sian splats combined with spherical harmonics and opacity
to represent 3D scenes. Later work incorporates image in-
painting to generate multi-view images and reconstruct 3D
Gaussian fields from a single image [6, 19, 39, 48, 61]. In-
spired by these approaches, we reconstruct stable Gaussian
scenes from the reference character art and render coarse
background videos to improve scene consistency.

3. Method

As illustrated in Figure 2, given a character art Z and a driv-
ing video V, the goal of DreamDance is to animate the im-
age 7 based on the human and camera motion in the video
V. Specifically, we utilize Xpose [46] to separately extract
the pose sequences of the human body, face, and hand, and
employ DPVO [36] to extract the camera poses {p§}&,,
p¢ € REXT from V. L indicates the sequence length. The
character and the background are segmented from Z using
BiRefNet [57]. Next, we reconstruct a 3D Gaussian field
from the reference background through multi-view image
inpainting, using both a pre-defined spiral camera trajectory
and the extracted camera trajectory. Then, a coarse back-
ground video is rendered by splitting the 3D Gaussian field
according to the extracted camera poses, and an inpainting
mask is generated from the driving pose sequence. Finally,
all the references and guidance are processed using the pre-
trained VAE and input into the gated video inpainting model
for dynamic character animation.

3.1. Preliminaries

Diffusion Denoising Probabilistic Models. Diffusion-
based generative models [11, 34] represent the data distri-

bution by constructing a Markov chain. Given an input data
distribution x(, the forward process applies a Markov nois-
ing process of T steps on x to obtain {x;}7_:

Q($t|$t—1) :N(\/axt—l,(l —Olt)I), (D

where oy € (0,1) are constant hyper-parameters. When
ay is small enough, 7 ~ AN(0,I). The reverse process
takes a noisier data distribution ; and generates a less noisy
distribution x;_; using a noise predictor, which is trained
with the simple loss function:

(@)

where € is the Gaussian noise. c is the text condition. €g(-)
is the trainable noise predictor. In this work, we utilize the
pre-trained CogVideoX, an MM-DiT-based video diffusion
model, as the base model to achieve pose-aware video in-
painting in DreamDance.

3D Gaussain Splatting (3DGS). Prior works [15, 62] pro-
pose to represent a 3D scene as a set of scaled 3D Gaus-
sian primitives {Gx|k = 1, ..., K} and render scene images
using volume splitting. The geometry of each scaled 3D
Gaussian Gy, is parameterized by an opacity o € [0,1],
center o, € R3*1, and covariance matrix 3, € R3%3,

To render an image for a given camera defined by rota-
tion R € R3*3 and translation t € R3, the 3D Gaussians
are first transformed into camera coordinates:

>, = RZRT.

[fsimple = ]Ee,t7c [HG - 60(3%7 ta C)H%] 3

o, =Rpy +t, 3)

Then, they are projected to ray space via a local affine trans-
formation. Finally, 3DGS utilizes spherical harmonics to
model view-dependent color ¢ and renders images via al-
pha blending according to the primitive’s depth order:

K k—1
c(x) = eGP () [[ (1 - ;677 (), @
k=1 j=1

where G2P is the scaled 2D Gaussian, obtained by remov-
ing the third row and column of the ray space covariance
matrix. In this work, we reconstruct a 3D Gaussian field
by inpainting the reference image and then rendering the
coarse background video using volume splitting.
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Figure 3. Camera-aware Scene Inpainting for stable scene re-
construction. We use both the pre-defined spiral camera trajectory
and the custom camera trajectory to reconstruct a 3D Gaussian
field via the warp-and-inpaint scheme.

3.2. Stable Scene Reconstruction

Existing 3D-agnostic motion guidance makes consistent
background generation during large-scale camera move-
ments an ill-posed problem [10]. Therefore, we reconstruct
stable Gaussian scenes to facilitate character art animation.

Camera-aware Scene Inpainting. As illustrated in Fig-
ure 3, inspired by the warp-and-inpaint scheme [32, 39],
we use a pre-defined spiral camera trajectory to reconstruct
the 3D scene. Firstly, at the starting point of the camera
trajectory, we use LLaVA [21] to generate detailed descrip-
tions of the reference background, and use Fooocus [53]
to inpaint the empty regions left by the removed character.
Afterward, we estimate the global depth map on this com-
plete background using DepthPro [4]. Next, as the camera
moves along the spiral trajectory, we warp the background
image to each new viewpoint using its depth map, and then
fill the empty regions through image inpainting. After this
warp-and-inpaint process, we obtain a set of RGBD images,
which are then used to train a stable 3D Gaussian field. The
spiral trajectory can be formulated as:

[ 7 sin(27t) - cos(27t)
r-sin(2nt) - sin(2wt) |,
—sin(2mt)

norm(o — pt) x U
R(t) = u ,
norm(o — py)

where P is the position and R is the rotation of the cam-
era, t € [0,1] is the camera time step, and r is the radius
of the field. U is the up vector [0,1,0] and o is the cam-
era looking point. This well-defined spiral trajectory ef-
fectively covers most of the missing regions and generates
comprehensive multi-view images. However, the custom
camera movements, provided by the user or extracted from
the driving video, may differ significantly from the spiral
trajectory. Therefore, we expand the 3D Gaussian field ac-
cording to the custom trajectory using the warp-and-inpaint
strategy again. Before this process, the camera rotations
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Figure 4. The gating strategy in our MM-DiT model and its com-
parison with the mainstream condition incorporation methods.

are standardized based on the first camera frame to ensure
consistency with the spiral trajectory. Finally, based on the
custom camera trajectory, a background video is rendered
through volume splatting at each camera step.

The reason we do not directly use the custom camera tra-
jectory to reconstruct the 3D scene is that it may be exces-
sively dynamic, potentially resulting in a discontinuous and
unstable 3D scene. Additionally, since the reconstructed 3D
scene often suffers from fidelity issues, the rendered back-
ground video may contain blurring, distortions, and black
voids. To address these challenges, we introduce a pose-
aware video inpainting strategy in the next step, which not
only integrates the animated character but also refines the
coarse background video for improved visual quality.

3.3. Dynamic Character Animation

Based on the coarse background video generated in the
first stage, we implement pose-aware video inpainting to
achieve dynamic character animation. Previous UNet-based
reference-denoising architectures lack the ability to model
video coherence effectively [10]. Therefore, we introduce
an MM-DiT-based video foundation model along with a
gating strategy to enable pose-guided character integration
and ensure temporal consistency.

Pose-aware Video Inpainting. As illustrated in Figure 2,
we divide the input references and guidance into three sets.
The first is the background set, which includes the coarse
background video, and an inpainting mask video generated
based on the region of the driving pose. The second is the
pose set, consisting of the driving face, hand, and body pose
videos. The final set is the reference character. All elements
in these three sets are encoded by the pre-trained 3D VAE,
and then stacked along the channel dimension to obtain the
latent background 3, pose -y, and character ¢. Next, the
latent background is concatenated with the base latent noise
x,; along the channel dimension. Then, three convolutional
layers are applied to project each of the three latent features
to the same channels, respectively.

Existing DiT-based models for character image anima-
tion typically use simple feature concatenation or addition
to inject the latent reference and guidance [16, 20]. How-



ever, unlike these methods, the goal of our model is to
inpaint the base background video using the posed char-
acter. Obviously, character appearance and pose informa-
tion should be prioritized during the initial denoising steps,
while at later steps, the model should focus more on overall
video refinement. To achieve this, we propose two denois-
ing step-based gates that adaptively inject the latent char-
acter and pose into the base latent noise according to the
denoising step t. Each gate consists of a Linear layer fol-
lowed by a tanh activation function. This gating strategy
can be formulated as:

z, =f (8, )
+tanh (gp(t)) - fp(7) +tanh (ge(t)) - fe(P),

where f(-) denotes the convolutional Project-In layers, and
g(+) represents the Linear layers. A detailed comparison of
the structural differences between existing methods and our
gating strategy is shown in Figure 4. Finally, we use MM-
DiT from CogVideoX [47] to perform the diffusion denois-
ing steps. Additionally, the reference character is embed-
ded using the CLIP image encoder [28] and serves as the
text hidden states in the cross-attention operations of MM-
DiT. This process is commonly used in existing work and
is therefore omitted from Figure 2. The resulting latent out-
put is decoded through the 3D VAE Decoder to generate the
character art animation.

(6)

3D Gaussian-free Training Approach. We perform super-
vised fine-tuning to train the gated video inpainting model
in DreamDance, starting from the image-to-video model
CogVideoX-5B. Given that constructing 3D Gaussian fields
is time-consuming, we inpaint the character region and
apply random down-sampling to the original video back-
ground to simulate the coarse video rendered from the 3D
Gaussian scene. The down-sampling approach includes
adding black blocks, introducing noise, blurring, and apply-
ing random perspective transformations. Additionally, fol-
lowing [10], we randomly generate stylized pair-wise im-
ages by concatenating the initial frames along the spatial
dimension and use the depth and edge-controlled SDXL-
Neta model [17] to transfer the art style. Then, the stylized
frames are repeated along the temporal dimension to con-
struct a fake video for training. To simulate the inference
process, in which the reference character art is irrelevant to
the driving pose, we randomly select reference frames that
are not involved in the target video clips.

During the training, we found that the supervision of
the background region in the video was too strong, caus-
ing the bodies of the inpainted characters to be incom-
plete. To address this issue, we use inpainting masks to re-
weight the loss and fill the character bounding boxes of the
background videos with black in the early training stages,
thereby enhancing dynamic character learning and elimi-
nating the model from overfitting to the backgrounds.

4. Experiments

Datasets. To train DreamDance, we collected an MMD
video dataset comprising 4,800 animations created by
artists, which is comparable to that of MikuDance. We split
these videos into approximately 150,000 clips, which to-
gether include over 14.8 million frames. For the quanti-
tative evaluation, we used 100 MMD videos that were not
included in the training set, with their first frames serving as
reference images. For the qualitative evaluation, all charac-
ter art was randomly generated using SDXL-Neta [17], and
the driving videos were not seen during training.

Implementation details. We implement DreamDance us-
ing the code base of VistaDream [39] and Finetrainers [25].
Experiments are conducted on 32 NVIDIA A800 GPUs.
During training, the videos are center-cropped and resized
to a resolution of 768 x 768, and the length is sampled to
48 frames. Training is conducted for 60,000 steps with a
batch size of 32. The learning rates are set to le-4, and the
dropout ratio for the character and pose guidance is set to
0.1. During inference, we use a DDIM sampler for 50 de-
noising steps. We adopt the temporal aggregation method
described in [37] to generate long videos. The code will be
released in the final version.

Evaluation metrics. Following MikuDance [10], we evalu-
ate the results from two aspects: image and video. To assess
image quality, we report frame-wise FID [9], SSIM [43],
LISPIS [54], PSNR [12], and and L1. For video quality, we
concatenate every consecutive 16 frames to form a sample,
from which we report FID-VID [1] and FVD [38].

4.1. Qualitative Results

Comparison with image animation baselines, including
MikuDance [10], as well as recent human animation meth-
ods, such as Animate Anyone (AniAny) [13], UniAnimate
[41], MimicMotion [55], and DisCo [40].

The results in Figure 5 demonstrate that AniAny, Uni-
Animate, MimicMotion, and DisCo struggle with a strong
shape prior on the human body, which leads to substan-
tial character distortion and fidelity issues in their outputs.
Moreover, the backgrounds in their generated videos remain
nearly static or excessively blurry, resulting in monotonous
and visually flat effects. While DisCo employs an inde-
pendent ControlNet to process the backgrounds, it suffers
from scene collapse when animating character art. Miku-
Dance shows significant improvements in animating char-
acter art, but the backgrounds still exhibit inconsistencies
when confronted with large-scale camera movements. No-
tably, thanks to the explicit reconstruction of the 3D scene
and the MM-DiT-based inpainting paradigm, our Dream-
Dance achieves precise camera control, coherent scene dy-
namics, and consistent animation generation, producing
high-quality and vivid 2D animation results.
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Comparison with character replacement baselines. One
valuable application of DreamDance is its ability to directly
replace humans in driving videos with reference charac-
ters. We compare it with MotionShop-2 [49] and MIMO
[22], which are 3D and 2D-based methods, respectively.
As shown in Figure 6, MotionShop-2 exhibits noticeable
character distortion due to the unresolved challenges of 3D
character reconstruction, while MIMO fails to effectively
preserve the attributes of the reference characters. Addi-
tionally, both MotionShop-2 and MIMO only support full-
body character images. In contrast, our DreamDance seam-
lessly integrates the 2D character into the driving video
without disrupting the harmony of the scene. This applica-
tion opens up broad prospects for DreamDance in creating
flexible video content.

High-dynamic and precise camera control. A key high-
light of DreamDance is its ability to animate characters

MotionShop-2

MIMO (ArXiv24)

with high-dynamic camera movements while maintaining
scene coherence through precise camera control. Distinct
from MikuDance, which relies on 2D flow for scene mo-
tion guidance, and AniAny, which always outputs static
backgrounds, DreamDance explicitly reconstructs stable
3D scenes. This approach avoids the context ambiguity that
typically arises in the scene inpainting process, ensuring
more consistent and immersive character animation with
high-dynamic motion, as demonstrated in Figure 7.

Ablation study. In Figure 8 and Figure 10, we conduct ab-
lation experiments to verify the key designs of our Dream-
Dance, which include the camera-aware scene inpainting
method, the MM-DiT-based model architecture, and the
gating strategy for video inpainting.

To demonstrate the necessity of the camera-aware scene
inpainting in DreamDance, we implemented a baseline (w/o
3DGS) that animates the character art directly using the
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MM-DiT model, bypassing the 3D Gaussian reconstruction
process. The results in Figure 8 indicate that this model fails
to generate consistent backgrounds due to the implicit in-
painting of unknown regions, leading to flickering and blur-
ring in the generated video. Moreover, as shown in Figure
10, reconstructing the 3D scene without the spiral camera
trajectory may result in discontinuous Gaussian fields.

To evaluate the MM-DiT-based model architecture, in
Figure 8, we implemented a UNet-based video inpainting
model. Since this model has limited capabilities in spatio-
temporal modeling and a smaller pre-training scale com-
pared to MM-DiT, its results are inferior to those of Dream-
Dance. To assess the effectiveness of the gating strategy
in our pose-aware video inpainting step, we conducted an
experiment in which the latents were directly added to the
noise without re-weighting them using the gates (w/o G).
This ablation model was trained on the same dataset with
the same training settings as DreamDance. However, its re-
sults exhibited an underfitting phenomenon, with the videos
appearing blurry during high-dynamic motion. Moreover,

MikuDance (ArXiv24)

w/ UNet”, and “w/o G” are defined in Section 4.1.
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as shown in Figure 10, our gated video inpainting model
also enhances the quality of the backgrounds provided by
the rendered 3D scene for character art animation.

We visualize the values of the adaptive gates across the
denoising time steps in the right part of Figure 10. As the
denoising steps progress from 0 to 50, both the character
gate and the pose gate decrease. This supports our con-
jecture that the model requires more information about the
character’s appearance and pose during the early denoising
steps, whereas in the later stages, it prioritizes optimizing
the quality of the existing latent videos.

Generalizability on various scenes and characters. Be-
yond reconstructing the scene from the reference character
art, DreamDance supports scene reconstruction from cus-
tom images and the animation of the reference character
across various scenes. As shown in the left part of Figure 9,
DreamDance effectively integrates animated characters into
diverse 3D Gaussian scenes. On the other hand, Dream-
Dance is also capable of handling multiple characters in a
wide range of art styles, including but not limited to cellu-



Table 1.

Quantitative comparisons with baselines and ablative experiments.

‘UNet’ and ‘w/o G’ are defined in Section 4.1.

‘Foreground-only’ refers to replacing the reference backgrounds with white images and evaluating only the character animations. The
best results are highlighted in bold, and the second-best are underlined. DreamDance achieves superior results across most metrics.

Methods | SSIM;  PSNR; LISPIS, L1~ FID, | FID-VID, FVD, | | FID, FVD,
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» | MimicMotion [55] 0.325 12.264 0.600 9.313 60.210 44.517 903.674 _3 30.125 407.856
DisCo [40] 0.313 10.732 0.615 9.248 59.221 46.852 923.921 E 31.221 564.892
& | AniAny [13] 0.488 12.530 0.548 7.307 43.945 38.179 846.414 gn 27.927 326.842
“ | MikuDance [51] 0.576 14.592 0.493 5.726 24.597 22.868 502.380 | 5 | 14.835 194.124
DreamDance UNet 0.612 16.721 0.383 4.622 32.923 19.387 477235 | = | 15227 221.126
&= | DreamDance w/o G 0.626 17.135 0.378 4.601 30.794 17.198 441.057 16.831 217.946
/| DreamDance (Ours) | 0.699 17.964 0.355 4.109 29.659 16.411 430.136 16.102  188.852
06 «0.659 Character Gate 4 331 331 317 333 3.39 203
Pose Gate <3
S 2.07 .
3 ?,Jz 179 457 143 L6 =
5 04 g :
el Z1
5 02 0.116
’ l’ 0 Character Quality Background Quality Temporal Quality
Denoising Step t 3 2.50 [ DreamDance
0.0 = 225 _
i oo 21 31 4l o 2.00 200 g5 % Re—r8D [0 MikuDance
52
Figure 10. Ablations on spiral trajectory (left), Scene enhance- % 1.50 @ AniAny
ment (middle), and visualization of the gate values (right). § 1 |:| [ UniAnimate
< [l MINO
loid, antiquity, and line sketch, as demonstrated in the right 0

part of Figure 9. This high level of flexibility opens up vast
possibilities for 2D animation applications.

4.2. Quantitative Results

Table | presents quantitative comparisons and the results
demonstrate that DreamDance achieves state-of-the-art per-
formance across most image and video metrics. Addition-
ally, the ablation results confirm the effectiveness of the key
design elements in the dynamic character animation stage of
DreamDance. To isolate character quality from background
effects, we conducted evaluations on foreground-only re-
sults, as shown in the right part of Table 1. In this setup,
we replaced the backgrounds of reference character art with
white images for baseline evaluation. For DreamDance, we
provided white background videos for character animation
inpainting. Under these conditions, DreamDance consis-
tently achieved the best video temporal quality.

User study. We invited 50 volunteers to evaluate Dream-
Dance against baseline methods on two tasks: image anima-
tion and character replacement. Each participant reviewed
15 videos, each containing one pose guidance and three or
four anonymous animation results. They ranked the results
based on character quality, background quality, and tempo-
ral consistency. After filtering out abnormal responses, the
average rankings are summarized in Figure 11. For image
animation, DreamDance significantly outperforms baseline
methods in background and temporal quality, with over

Character Quality Background Quality Temporal Quality [ MotionShop2

Figure 11. User Study for image animation (top) and character
replacement (bottom). The smaller value means the better quality.

77.27% of users preferring its animations. For character re-
placement, DreamDance achieves the highest character and
temporal quality, favored by more than 59.09% of users.

5. Conclusions

In this work, we propose DreamDance, a new inpainting-
based pipeline for animating character art. DreamDance in-
tegrates two key techniques: Camera-aware Scene Inpaint-
ing and Pose-aware Video Inpainting. Camera-aware Scene
Inpainting reconstructs stable Gaussian scenes, allowing for
the rendering of coarse yet context-coherent background
videos. Pose-aware Video Inpainting then adaptively incor-
porates pose-guided characters into the background, refin-
ing the video quality and ensuring consistent animation for
stylized character art. Extensive experiments demonstrate
that DreamDance outperforms baseline methods, achieving
state-of-the-art results in character art animation.
Limitations. We acknowledge that some generated anima-
tions exhibit artifacts, particularly in character details such
as the hands and clothing. This issue arises from the limita-
tions of the datasets and the base model. Additionally, ex-
tracting precise camera parameters from real-world videos
remains a challenge, often requiring manual adjustments.
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