
MikuDance: Animating Character Art with Mixed Motion Dynamics

Jiaxu Zhang1,2 Xianfang Zeng2† Xin Chen3 Wei Zuo2 Gang Yu2‡ Zhigang Tu1‡

1Wuhan University 2StepFun 3ByteDance
Project page: https://kebii.github.io/MikuDance

Abstract

We propose MikuDance, a diffusion-based pipeline incor-
porating mixed motion dynamics to animate stylized char-
acter art. MikuDance consists of two key techniques: Mixed
Motion Modeling and Mixed-Control Diffusion, to ad-
dress the challenges of high-dynamic motion and reference-
guidance misalignment in character art animation. Specif-
ically, a Scene Motion Tracking strategy is presented to ex-
plicitly model the dynamic camera in pixel-wise space, en-
abling unified character-scene motion modeling. Building
on this, the Mixed-Control Diffusion implicitly aligns the
scale and body shape of diverse characters with motion
guidance, allowing flexible control of local character mo-
tion. Subsequently, a Motion-Adaptive Normalization mod-
ule is incorporated to effectively inject global scene motion,
paving the way for comprehensive character art animation.
Through extensive experiments, we demonstrate the effec-
tiveness and generalizability of MikuDance across various
character art and motion guidance, consistently producing
high-quality animations with remarkable motion dynamics.

1. Introduction

Character art plays a crucial role in the film, game, and
digital design industries. Animating character art, which
brings static character images to life, has been an increas-
ingly prominent challenge in computer vision and graph-
ics. Traditional animation software, such as MMD [11],
and Live2D [22], requires professional skills, posing sig-
nificant barriers for non-experts. Recently, image-to-video
generation methods [7, 19, 21, 40, 50] have emerged as a
promising solution for animation. However, these methods
are primarily designed for animating real-world humans and
cannot be directly applied to character art due to the follow-
ing two key challenges.

The first challenge arises from the high-dynamic mo-
tion guidance for both the complex foreground and back-
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Figure 1. We propose MikuDance, a Diffusion-based pipeline for
animating complex and stylized character art with high-dynamic
motion guidance. The core insight of MikuDance lies in its Mixed
Motion Modeling and Mixed-Control Diffusion capabilities.

ground in character art, making unified control and main-
taining temporal consistency difficult. For instance, in the
second drawing shown in Figure 1, the girl is portrayed in
an elegant dress against an artistic background, driven by
large-scale dance motion and camera movements. Existing
image animation methods, such as Animate Anyone [14]
and DISCO [36], are primarily limited to animating humans
with a static camera and a clean background. In contrast,
animating character art requires the model to handle large-
scale motion within complex scenes. As a result, simultane-
ously modeling the high-dynamic motion of both characters
and the entire backgrounds becomes a critical task.

The second challenge stems from the unique body
shapes and diverse scales of characters, which often mis-
align with motion guidance. For example, anime charac-
ters exhibit a large head-to-body ratio, exaggerated poses,
and varied artistic styles. As shown in Figure 1, previous
methods employ separate networks to process the reference
image and motion guidance, oversimplifying the task by as-
suming a pre-aligned human body [30, 51], or performing
alignment through pre-processing [37], which often leads to
unnecessarily complex motion control architectures. How-
ever, considering that art images feature distinct characters,
explicit alignment becomes impractical. Thus, implicitly
aligning the reference image and motion guidance within a
unified structure presents a significant task.

https://kebii.github.io/MikuDance


To address these challenges and leverage recent ad-
vancements in video generation for character art anima-
tion, we propose MikuDance. MikuDance animates in-the-
wild character art by utilizing mixed character-scene motion
guidance to generate videos with large-scale motion dynam-
ics. It introduces two key techniques: Mixed Motion Mod-
eling and Mixed-Control Diffusion.

Mixed Motion Modeling explicitly represents character
motions and 3D dynamic camera movements within a uni-
fied 2D space, enabling local and global motion guidance
of both foreground and background in animations. Un-
like previous methods that use camera parameters directly
as the control signal [9, 39, 42], we propose a Scene Mo-
tion Tracking (SMT) strategy to model the global motion.
SMT strategy projects the reference image to a scene point
cloud and tracks corresponding points across consecutive
camera frames, transforming camera poses into a pixel-
wise scene motion representation. This scene motion, re-
sembling keypoint-based character motion, establishes the
foundational basis of our mixed motion control approach.

Mixed-Control Diffusion addresses misalignments in
scales and body shapes of characters by integrating all ref-
erence and motion guidance into a unified Reference UNet
[29]. This design is based on our observation that the mixed
and implicit alignment approach outperforms other sophis-
ticated control networks while preserving an elegant model
architecture. Moreover, as scene motion guides the global
dynamics of the animation, we carefully design a Motion-
Adaptive Normalization (MAN) module to flexibly inject
the scene motion into the Reference UNet, effectively inte-
grating global dynamics and maintaining local consistency
in character art animation.

By leveraging these two techniques and a mixed-source
training approach, MikuDance animates diverse character
art with mixed motion dynamics. We evaluate MikuDance
using a range of reference characters and motion guidance.
Both qualitative and quantitative results demonstrate that
MikuDance can generate high-quality animation, particu-
larly in maintaining consistency in character local motion
and effectively handling large-scale scene motion.

Contributions of our MikuDance are listed below:
• Mixed Motion Modeling is proposed to explicitly

model character and camera motions within a unified
pixel-wise space, enabling the effective representation
of high-dynamic motion.

• Mixed-Control Diffusion is exploited to implicitly
align character shape, pose, and scale with the motion
guidance, enabling cohesive motion control for char-
acter art animation.

• Extensive experiments demonstrate the effectiveness
and generalizability of our MikuDance, achieving su-
perior animation quality and high-dynamic motion
control compared to state-of-the-art methods.

2. Related Work

Human image animation, which aims to generate human
action videos from a reference image, has been studied ex-
tensively in recent years. Early methods, such as FOMM
[31] and Liquid Warping GAN [20], warped the source hu-
man image using affine transformations guided by dense
optical flow. Recently, diffusion-based approaches have
gained traction due to their strong generalizability [3]. For
instance, PIDM [2] introduced a texture diffusion module to
model the correspondence between human appearance and
poses. DreamPose [16] incorporated an adapter module to
integrate both CLIP [27] and VAE [17] features of refer-
ence images. Animate Anyone [14] proposed a UNet-based
ReferenceNet to extract appearance from reference images,
along with a Pose Guider to encode the driving pose se-
quences, and a temporal module introduced by AnimateDiff
[8] to enhance video consistency.

Following Animate Anyone, many diffusion-based mod-
els have been successively proposed, incorporating specific
human motion guidance such as dense poses [43], 3D hu-
man models [51], and hand sequences [49]. Addition-
ally, DISCO [36] proposed decoupling human subjects from
backgrounds, and UniAnimate [37] employed a unified De-
noising UNet to generate long-term video. While these
methods introduce increasingly stringent human body pri-
ors, they do not account for the variable shapes and scales
found in anime characters. Moreover, Animate-X [32] gen-
eralizes the pipeline to anthropomorphic characters but ne-
glects the broader movements of the entire scene. In con-
trast, we design the Mixed-Control Diffusion to address the
challenges of misalignment and comprehensive motion con-
trol in animating character art.

Controllable video generation builds upon the success of
image generation by integrating additional spatial and tem-
poral control signals. For example, VideoCrafter [4] and
DynamiCrafter [41] control the first frame of the generated
video through an image injection module. DragNUWA [46]
integrates motion trajectories to control object movements.
Animate Anything [5] introduces area guidance and motion
strength guidance to achieve fine-grained motion control.
In this work, the central focus is on the unified guidance of
both character motion and camera movements.

Moving forward, existing works on camera control in
video generation [9, 42, 45] often use Plücker coordinates
[15] as an embedding of camera poses. Recent works such
as Human4DiT [30] and HumanVid [39] consider camera
movement in human videos by using an independent cam-
era encoder and directly adding this embedding into the
Denoising UNet. However, this camera embedding has a
significant domain gap compared to the image pixel-wise
guidance of character motion, making it difficult to fuse
and maintain consistency in animation. In this work, we
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Figure 2. Illustration of our MikuDance pipeline. Given a reference character art and a driving video, the pixel-wise scene motion is
predicted using the Scene Motion Tracking (SMT) strategy, which is combined with the character poses to form the character-scene mixed
motion guidance. The Mixed-Control Diffusion subsequently generates the animation in a latent space, guided by the character poses and
the scene motion injected through the Motion-Adaptive Normalization (MAN) module.

explicitly track camera movement in pixel space and inte-
grate it with character motion guidance using the Motion-
Adaptive Normalization module, enabling high-dynamic
motion modeling in character art animation.

3. Method

As illustrated in Figure 2, given a character art I and a driv-
ing video V , The purpose of our MikuDance is to animate
the image I with reference to the human and camera motion
in video V . Specifically, we utilize Xpose [44] to separately
extract pose sequences of the human body, face, and hand,
and employ DROID-SLAM [33] to extract the camera poses
{pc

l }Ll=1, pc ∈ RL×7 from V . L indicates the sequence
length. The character’s initial body pose, which exhibits
significant scale and pose differences compared to the driv-
ing video, is also extracted from I. Next, the image I and
all the reference and driving pose images are encoded into
the latent space through a VAE Encoder. The camera poses
pc is processed through the Scene Motion Tracking strat-
egy to obtain the pixel-wise scene motion guidance. Then,
the Mixed-Control Diffusion is used to animate I guided
by the mixed motion guidance of the character poses and
scene motion in the latent space. Finally, the latent output
is decoded through the VAE Temporal Decoder to produce
the character art animation.

3.1. Preliminaries on Stable Diffusion
Stable Diffusion (SD) [28] is a popular Latent Diffusion
Model for text-to-image generation. SD consists of a VAE
[17] for auto-encoding the images, and a UNet [29] for
noise estimation to iteratively transform a noise image into
a latent image by the reverse diffusion process [12]. Given
an input data distribution x0, the forward process apply a
Markov noising process of T steps on x0 to obtain {xt}Tt=0:

q(xt|xt−1) = N (
√
αtxt−1, (1− αt)I) , (1)

where αt ∈ (0, 1) are constant hyper-parameters. When
αt is small enough, xT ∼ N (0, I). The reverse process
takes a noisier data distribution xt and generates a less noisy

distribution xt−1 using an UNet, which is trained with the
simple loss function:

Lsimple := Eϵ,t,c

[
∥ϵ− ϵθ(xt, t, c)∥22

]
, (2)

where ϵ is the Gaussian noise. c is the text condition. ϵθ(·)
is the trainable noise predictor. In this work, inspired by An-
imate Anyone [14], we utilize the pre-trained SD-1.5 as our
base model to develop our animation pipeline, MikuDance.

3.2. Mixed Motion Modeling
Following existing human image animation methods [3, 14,
36], we use image-based pose sequences as motion guid-
ance for characters. Unlike previous approaches that di-
rectly extract the character’s whole-body poses, we sepa-
rately extract poses for the body, face, and hands, allowing
the face and hands to be optional and enabling more flex-
ible motion control. However, character animation often
involves high-dynamic motion throughout the entire scene
to enhance the visual impact of storytelling. Traditional
pose sequences offer only character motion guidance, lack-
ing representations for background dynamics. To address
this, we introduce the Scene Motion Tracking strategy.
Scene Motion Tracking (SMT). As illustrated in Figure
3, given a camera pose pc

l from the driving video at the
l-th frame, a scene point cloud ϕl ∈ RN×3 of the char-
acter art I is constructed in the pc

l coordinate system us-
ing the depth map of I. N is the number of points, which
depends on the size of the image. Next, ϕl is transferred
into the world coordinate system through the camera-to-
world matrix T l ∈ RN×4×4 of pc

l , resulting in the point
cloud ϕw. Subsequently, by applying the world-to-camera
matrix Y l+1 ∈ RN×4×4 of the camera pose pc

l+1, we ob-
tain the point cloud ϕl+1 for the next frame. Finally, we
project ϕl and ϕl+1 into the image coordinate system us-
ing the intrinsic matrices K ∈ RN×3×4 of pc

l and pc
l+1,

respectively. The projected images are denoted as Il and
Il+1. Since these two projected images are rendered from
the same scene point cloud in the world coordinate system,
we can calculate the scene motion ms ∈ RN×2 in the im-
age space based on the correspondence of the points. This
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Figure 3. Illustration of the Scene Motion Tracking strategy. To effectively guide global background motion, 3D camera poses extracted
from the driving video are transformed into a pixel-wise 2D space through the projection of the scene’s point cloud (PC).

process is formulated as:(
zl − zl+1

) [ms

1

]
= Kl

[
ϕl

1

]
−Kl+1Y l+1T l

[
ϕl

1

]
, (3)

where z represents the projected Z-axis coordinates, serv-
ing as a scale factor for the scene motion ms.

Notably, our SMT strategy diverges from the optical flow
commonly used in video generation methods [6, 23] in two
key respects: first, the scene motion extracted by SMT is
independent of the driving video’s content, whereas optical
flow is content-dependent. Second, SMT tracks 3D points
from the point cloud, while optical flow tracks pixel move-
ments in the image domain, without considering the actual
3D scene. Consequently, our SMT strategy provides de-
coupled camera dynamic information, which is crucial for
continuous background motion in character art animation.

In the proposed SMT process, we assume that the char-
acter and scene are static and standardized in the first cam-
era. However, in real applications of character art anima-
tion, the reference scene often misaligns with the camera
scale of the driving video, and the character pose varies
in each frame. This ambiguity cannot be explicitly elimi-
nated and necessitates the model to be implicitly perception
guided by the character pose and the art image. Therefore,
we propose Mixed-Control Diffusion in the next section.

3.3. Mixed-Control Diffusion
The concept of our Mixed-Control Diffusion is to mix and
fuse all motion guidance for the character and scene within
a unified reference space, thereby achieving aligned motion
control over the animation.

As illustrated in Figure 2, drawing inspiration from Ani-
mate Anyone [14], we utilized the pre-trained SD-1.5 as the
base Denoising UNet and a copy of it as the Reference UNet
to achieve controllable image-to-video generation. Distinct
from Animate Anyone and other related work, we eliminate
separate encoders for motion guidance and simultaneously
encode the reference character art, the reference pose, and
all character pose guidance using the VAE Encoder, embed-
ding them into the same latent space. Next, all embedded

guidance is concatenated along the channel dimension to
serve as the input for the Mixed-Control Reference UNet.
To accommodate this mixed input, we expand the channel
of the input convolution layer in the Reference UNet, initial-
izing the added parameters with zero convolution weights
[47]. Additionally, the reference image is embedded using
the CLIP image encoder [27] and serves as the key features
in the cross-attention operations of both the Denoising UNet
and the Reference UNet. This process is commonly used in
existing work and is therefore omitted from Figure 2.

In each denoising step t of the Mixed-Control Diffusion,
the self-attention features from the Reference UNet are in-
jected into the Denoising UNet through an addition oper-
ation. The Reference UNet requires inference only once,
while the denoising process is repeated T times. The exper-
iments demonstrate that our mixed control approach outper-
forms other control encoding and fusion methods by effec-
tively addressing the misalignments between the reference
image and the motion guidance. Furthermore, since scene
motion exerts a global influence on the animation frames,
it is intuitive to integrate it with character motion using an
adaptive normalization method, as introduced below.

Motion-Adaptive Normalization (MAN) is designed to
effectively mix the extracted pixel-wise scene motion, ms,
and enhance the temporal consistency of both foreground
and background animations.

Inspired by SPADE [24], which employs a spatial-aware
normalization method to capture semantics for image syn-
thesis, we propose to implement spatial-aware normaliza-
tion adapted by scene motion, as shown in the right part of
Figure 2. Let the mixed motion feature of the i-th block
in the Reference UNet be denoted as f i. We first normal-
ize it using the Instance Normalization operation. Then,
the scene motion ms is processed through three convolu-
tional layers to obtain the motion-adapted standard devia-
tion γi ∈ RC×H×W and the mean βi ∈ RC×H×W . Here,
C, W , H represent the channel, height, and width of the
feature, respectively. It is important to note that both βi and
γi have spatial dimensions, enabling pixel-wise guidance
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of the entire scene motion. This process is formulated as:

f i′ = γi
C,H,W (ms)

f i
C,H,W − µi

C

σi
C

+βi
C,H,W (ms) , (4)

where µi
C and σi

C are the mean and standard deviation of
f i along the channel dimension.

With the proposed Mixed Motion Modeling and Mixed-
Control Diffusion, along with the incorporation of the MAN
module after each down-sampling block in the Reference
UNet, we outline the complete pipeline of our MikuDance.
Furthermore, to enhance MikuDance’s ability to accommo-
date various styles of character art and the dynamics of
large-scale camera movements, we present a mixed-source
training approach in the next section.

3.4. Mixed-Source Training Approach
Considering that image animation is a data-intensive task,
proposing an effective data and training pipeline is as cru-
cial as the model itself. In our MikuDance, as illustrated in
Figure 4, we adopt a mixed-source training approach with
two-stage training stages.

In the first stage, training is conducted using pair-wise
video frames, without incorporating the MAN module of
the Reference UNet or the temporal module of the Denois-
ing UNet. Different from existing methods [14, 37], we
randomly mix stylized pair-wise frames by concatenating
the initial frames along the spatial dimension and utilize
the depth and edge-controlled anime SDXL model [26, 47],
known as SDXL-Neta [18], to transfer the art style while
preserving the image content. Additionally, to simulate the
inference process in which the reference character art is ir-
relevant to the driving pose, we randomly select reference
frames that are not involved in the target sequence.

In the second stage, both the MAN module and the tem-
poral module are incorporated into our Mixed-Control Dif-
fusion model, while the other parameters remain frozen dur-
ing this phase. The training data in this stage consists of
mixed MMD video clips and camera movement videos that
do not include characters. Importantly, we randomly drop
the pose and motion guidance during the two-stage training
to enhance the robustness of our MikuDance.

4. Experiments

Datasets. To train our MikuDance, we collected an
MMD video dataset comprising 3,600 animations created
by artists, all rendered from 3D models. We split these
videos into approximately 120,000 clips, which together in-
clude over 10.2 million frames. Additionally, we incorpo-
rated around 3,500 non-character camera movement videos
in the second training stage. For quantitative evaluation, we
used 100 MMD videos that were not included in the train-
ing set, with their first frames serving as reference images.
We used Xpose [44] for character pose and DROID-SLAM
[33] for camera pose extraction. For qualitative evaluation,
all character art was randomly generated using SDXL-Neta
[18] and the driving videos were unseen during training.

Implementation details. We implement MikuDance us-
ing the SD-1.5 framework [28] and PyTorch [25]. Exper-
iments are conducted on 16 NVIDIA A800 GPUs. In the
first training stage, the video frames are center-cropped and
resized to a resolution of 768× 768. Training is conducted
for 120,000 steps with a batch size of 128. In the second
training stage, we train the MAN module and the temporal
module for 60,000 steps using 24-frame video sequences
and a batch size of 16. Both learning rates are set to 1e-5,
and the dropout ratio for the pose and scene motion guid-
ance is set to 0.2. During inference, we use a DDIM sampler
for 20 denoising steps. We adopt the temporal aggregation
method described in [34] to generate long videos.

Evaluation metrics. Following DISCO [36], we evaluate
the results from two aspects: image and video. To assess
image quality, we report frame-wise FID [10], SSIM [38],
LISPIS [48], PSNR [13], and L1. For video quality, we
concatenate every consecutive 16 frames to form a sample,
from which we report FID-VID [1] and FVD [35].

4.1. Qualitative Results
Comparison with the baselines. We compare our Miku-
Dance with recent human video generation methods, in-
cluding Animate Anyone (AniAny) [14], DISCO [36],
MagicPose [3], and UniAnimate [37], all of which claim
the capability to animate anime-style characters in their of-
ficial reports. Additionally, we implemented AniAny* by
fine-tuning the model on our MMD video dataset.

The results in Figure 5 show that AniAny, MagicPose,
and UniAnimate fail to address the misalignment of char-
acter shape and scale, resulting in character distortion in
their outputs. While DISCO uses independent ControlNets
to process background and foreground features, its results
suffer from scene collapse when animating character art.
Although AniAny* is specifically fine-tuned on the anime-
style dataset, its results show limited improvements and
blurring in high-dynamic motion, as the pipeline fails to ac-
count for background scene motion. Notably, MikuDance



Reference MikuDance  (Ours) MagicPose (ICML23)AniAny*AniAny (CVPR24) DISCO (CVPR24)UniAnimate (ArXiv24)

Figure 5. Comparison with the baselines. AniAny* is the fine-tuned version of the AniAny model, trained on our MMD video dataset.
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Figure 6. Experiments on high-dynamic motion guidance. Large camera movements (left) and significant pose variations (right).

effectively handles complex reference and motion guidance,
delivering high-quality and vivid animation results.

High-dynamic motion. A key highlight of MikuDance is
its ability to handle high-dynamic motion guidance in ani-
mation, which goes beyond the simple actions used in exist-
ing methods. As shown in Figure 6, the character performs
large dance movements with a fast-moving camera. De-
spite these challenging conditions, MikuDance, equipped
with our Mixed Motion Modeling approach, demonstrates
remarkable robustness, delivering high-fidelity animation
results that effectively capture the dramatic visual impact.

Reference-guidance misalignments. Another key contri-
bution of MikuDance is its implicit alignment of the ref-
erence character with motion guidance. As illustrated in
Figure 7, two examples show significant spatial and scale
misalignments between the guidance and the reference. In
such cases, existing methods like AniAny struggle to an-
imate the reference character effectively, whereas Miku-
Dance successfully manages these complexities and gener-
ates coherent animations.

Various shapes and scales. MikuDance effectively handles
variations in character shapes and scales. As shown in the
left part of Figure 8, characters with distinct body shapes,
various poses, and different clothing are precisely driven
by the same motion guidance. In the right part of Figure 8,
MikuDance demonstrates its ability to implicitly align char-
acters of varying scales, preserving each character’s unique
features and producing reasonable animation results

Generalizability on various art styles. As illustrated in
Figure 9, MikuDance, leveraging our mixed-source training
approach, can handle a wide range of art styles, including
but not limited to celluloid, antiquity, and line sketch. This
high level of generalizability opens up broad prospects for
real-world applications.

Ablation study. We conduct ablation experiments to ver-
ify the key designs of our MikuDance, as shown in Figure
10, which include the mixed-control architecture (MIX), the
MAN module, and the SMT strategy.

To evaluate the mixed-control design, we implemented
a pipeline (w/o MIX) inspired by AniAny, utilizing an in-
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Figure 7. Experiments on misalignments between reference images and driving poses. Spatial (left) and scale (right) misalignments.
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Figure 8. Experiments on various shapes (the left part) and scales (the right part) of the reference character art.
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Figure 9. Experiments on various styles of the reference character art. Please see Appendix for more results.

dependent Reference UNet to process the reference image
and two ControlNets to separately adapt the character and
scene motion guidance. The results indicate that this con-
ventional pipeline fails to account for scale differences be-
tween the character art and the driving guidance, leading to
a mismatched appearance of the character’s face and pose.

To evaluate the effectiveness of the MAN module, we
implemented a pipeline without MAN (w/o MAN) that sim-
ply concatenates scene motion with character motion and
inputs them together into the Reference UNet. While this
approach yields better results than a pipeline without scene
motion guidance (w/o SMT), it remains inferior to the re-
sults achieved by MikuDance. This is because the MAN
module injects global motion through spatial-aware normal-
ization, effectively complementing the local motion.

To evaluate the SMT strategy, we conducted three exper-
iments: one pipeline without incorporating scene motion

(w/o SMT), and two pipelines that replaced the scene mo-
tion with Plücker embedding (w/ Plücker) and optical flow
(w/ Flow), respectively. However, the results from these
alternative approaches were inferior to our SMT strategy,
showing noticeable artifacts and inconsistencies in the dy-
namic backgrounds. The pixel-wise scene motion extracted
by SMT proved to be a more effective representation for
guiding background motion due to its domain consistency
with the character motion guidance.

Compared to the ablative studies introduced above, our
MikuDance effectively addresses the misalignment and
high-dynamic challenges in animating character art.

4.2. Quantitative Results
Table 1 presents quantitative comparisons between Miku-
Dance and the baseline methods. It is important to note that
the metrics reported in our paper are lower than those in



Reference Ablation for Mixed Motion Modeling
w/o SMT w/ Plücker w/ Flow

MikuDance Ablation for Mixed-Control Diffusion
w/o MANw/o MIXOurs

Figure 10. Ablation experiments on the key designs of MikuDance. MIX, SMT, MAN, Plücker, and Flow are defined in Section 4.1.

Table 1. Quantitative
comparisons with
baselines and ablative
experiments. AniAny*
is the fine-tuned version
of the AniAny model.
MIX, SMT, MAN,
Plücker, and Flow are
defined in Section 4.1.
The best results are
highlighted in bold,
and the second-best are
underlined. MikuDance
achieves superior results
across all metrics.

Methods Image Video

FID↓ SSIM↑ PSNR↑ LISPIS↓ L1↓ FID-VID↓ FVD↓

AniAny [14] 43.945 0.488 12.530 0.548 7.307E-05 38.179 846.414
AniAny* 28.833 0.526 13.610 0.517 6.229E-05 26.764 575.304
DISCO [36] 59.221 0.313 10.732 0.615 9.248E-05 46.852 923.921
MagicPose [3] 44.258 0.424 12.357 0.554 7.767E-05 41.347 886.691
UniAnimate [37] 47.328 0.417 12.074 0.571 7.930E-05 40.924 882.245

MikuDance w/o MIX 27.315 0.523 14.004 0.528 5.860E-05 24.124 541.453
MikuDance w/o MAN 24.985 0.542 14.501 0.505 5.753E-05 23.366 509.342
MikuDance w/o SMT 25.472 0.534 14.312 0.512 5.911E-05 23.362 517.673
MikuDance w/ Plüc. 25.918 0.538 14.261 0.510 6.011E-05 23.471 521.853
MikuDance w/ Flow 26.141 0.516 14.088 0.523 5.925E-05 23.079 505.533
MikuDance (Ours) 24.597 0.576 14.592 0.493 5.726E-05 22.868 502.380
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Figure 11. User Study. The smaller value means the better quality.

previous studies, as the entire scene in our testing videos
is highly dynamic, unlike the static backgrounds used in
earlier datasets. Nevertheless, the results demonstrate that
MikuDance achieves state-of-the-art performance across all
image and video metrics. Additionally, the ablation re-
sults confirm the effectiveness of the key design elements
in MikuDance. In summary, by incorporating the proposed
mixed motion dynamics techniques, MikuDance can ani-
mate a wide range of characters and generate high-quality
image and video results.

User study. We invited 50 volunteers and gave them
20 videos to evaluate the performance of our MikuDance
against the baseline methods. Each video includes one mo-
tion guidance and four anonymous animation results. We

ask users to rank the four results in overall quality, frame
quality, and temporal quality. After excluding abnormal
questionnaires, the average rank of the methods is summa-
rized in Figure 11. Our MikuDance outperforms the base-
line methods by a large margin and more than 97% of users
prefer the animation generated by our MikuDance.

5. Conclusions
In this work, we propose MikuDance, a new animation
pipeline designed to generate high-dynamic animations for
in-the-wild character art. MikuDance incorporates two key
techniques: Mixed Motion Modeling and Mixed-Control
Diffusion. Mixed Motion Modeling enables the represen-
tation of large-scale character and scene motions within a
unified reference space, while Mixed-Control Diffusion ad-
dresses misalignment between characters and motion guid-
ance. To support diverse art styles, we also employ a mixed-
source training approach to enhance generalizability. Ex-
tensive experiments demonstrate that MikuDance achieves
state-of-the-art performance compared to baseline methods.
Limitations. We acknowledge that some generated anima-
tions exhibit background distortions and artifacts. This is-
sue stems from the 3D-agnostic challenge in image anima-
tion, making scene reconstruction in dynamic cameras an
ill-posed problem that requires further investigation.
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MikuDance: Animating Character Art with Mixed Motion Dynamics

Supplementary Material

A. Supplementary on Experiments
Quantitative comparisons on foreground-only results.
The quantitative results of previous methods are primar-
ily evaluated on videos with static backgrounds and sim-
ple human motions. In contrast, our test dataset includes
high-dynamic motions in both the foreground and back-
ground. To provide a clearer evaluation, we report ad-
ditional comparisons on foreground-only results in Table
2, which remove complex backgrounds using a segmenta-
tion mask generated by BiRefNet (CAAI-AIR’24) and fo-
cus solely on the quality of character animation. The re-
sults show that MagicPose outperforms AniAny in charac-
ter quality, as it better preserves the character’s appearance.
Among all methods, our MikuDance consistently achieves
superior results across all metrics.
Scene motion visualization. Figure 12 presents a visual-
ized example of scene motion, depicted using directed line
segments (a) and dense flow (b).
Animating video frames. Since quantitative evaluation re-
quires ground-truth video to calculate metrics, we collected
an unseen test video dataset and used the first frames as ref-
erence images. Additionally, most results reported in prior
works, such as Animate Anyone and DISCO, involve the
animation of video frames where the reference image is nat-
urally aligned with the motion guidance. Examples of video
frame animations generated by MikuDance are illustrated in
Figure 13. These results show that, when handling the sim-
pler task of animating video frames, MikuDance exhibits
stable, high-quality performance even with complex and
high-dynamic motion guidance. Notably, the primary mo-
tivation behind MikuDance is to animate in-the-wild char-
acter art, offering broader application potential compared to
prior works focused on animating video frames.
Additional results on high-dynamic motions. In Fig-
ure 14, we present additional animation results gener-
ated by MikuDance under high-dynamic motion guidance,

which includes large pose variations, extensive camera
movements, turning around, and incomplete body postures.
These results further demonstrate MikuDance’s robust abil-
ity to handle complex character and scene motion.
Additional results on various shapes and styles. Miku-
Dance demonstrates strong generalizability across a wide
range of characters and art styles. Additional results are il-
lustrated in Figure 15. Remarkably, even in extremely chal-
lenging cases, such as the one shown in the third row of
Figure 15, MikuDance consistently generates vivid anima-
tions that preserve both the character’s appearance and the
scene structure.

B. Demo Videos and User Study Details
We provide two demo videos. MikuDance-Results.mp4
showcases the animation results presented in our paper.
MikuDance-Queencard.mp4 is a complete Music Video
(MV) with animations fully generated by MikuDance, us-
ing reference character art created by SDXL-Neta.

Figure 16 shows an example of the user study webpage.
In one case, 50 volunteers were invited to rank four anony-
mous results based on three carefully defined evaluation cri-
teria. We provided 20 videos for the volunteers to evaluate,
and the average time required to complete the entire ques-
tionnaire was over 30 minutes.
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Figure 12. Visualization of the scene motion.

Methods Image Video

FID↓ SSIM↑ PSNR↑ LISPIS↓ L1↓ FID-VID↓ FVD↓

AniAny 27.927 0.625 14.831 0.431 3.307E-05 15.197 326.842
AniAny* 17.037 0.801 17.194 0.202 2.284E-05 7.546 211.384
DISCO 31.221 0.533 13.155 0.518 4.824E-05 22.828 564.892
MagicPose 25.248 0.695 15.240 0.362 3.014E-05 13.248 299.912
UniAnimate 29.818 0.601 14.147 0.448 3.902E-05 18.416 381.485
MikuDance (Ours) 14.835 0.846 17.809 0.137 2.060E-05 6.765 194.124

Table 2. Quantitative comparisons on foreground-only results.
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Figure 13. Supplementary experiments on animating video frames.
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Figure 14. Additional results on high-dynamic motions.
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Figure 15. Additional results on various shapes and styles.



Figure 16. An example of our user study webpage.
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